10 resultados para macrophages

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidised LDL accumulates in macrophages following scavenger receptor (SR) uptake. The expression of the SR, CD36, is increased by oxidised LDL. The signalling molecule, ceramide, can modulate intracellular peroxides and increase lipid peroxidation. Ceramide also accumulates in atherosclerotic plaques. Thus, we have examined whether ceramide can modulate CD36 expression and function in human monocyte/macrophages. Addition of synthetic short chain ceramides or the action of sphingomyelinase to generate physiological long chain ceramides in situ caused significant reductions in CD36 expression by monocytes/macrophages which was not due to inhibition of mRNA expression. Inhibition of proteasomal degradation using lactacystin had no effect on CD36 expression, however, flow cytometric analysis of permeabilised cells suggested an intracellular trafficking blockade. Ceramide treated monocytes/macrophages showed dose dependent reduction in oxidised LDL uptake. Taken together, it is suggested that ceramide blocks the transport of CD36 to the membrane of monocytes/macrophages, thereby preventing uptake of oxidised LDL. © 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transglutaminase 2 (TG2) is a protein crosslinking enzyme with several additional biochemical functions. Loss of TG2 in vivo results in impaired phagocytosis of apoptotic cells and altered proinflammatory cytokine production by macrophages engulfing apoptotic cells leading to autoimmunity. It has been proposed that TG2 acts as an integrin ß(3) coreceptor in the engulfment process, while altered proinflammatory cytokine production is related to the lack of latent TGFß activation by TG2 null macrophages. Here we report that TG2 null macrophages respond to lipopolysaccharide treatment by elevated IL-6 and TNFa production. Though TGFß has been proposed to act as a feed back regulator of proinflammatory cytokine production in LPS-stimulated macrophages, this phenomenon is not related to the lack of active TGFß production. Instead, in the absence of TG2 integrin ß(3) maintains an elevated basal Src family kinase activity in macrophages, which leads to enhanced phosphorylation and degradation of the I?Ba. Low basal levels of I?Ba explain the enhanced sensitivity of TG2 null macrophages to signals that regulate NF-?B. Our data suggest that TG2 null macrophages bear a proinflammatory phenotype, which might contribute to the enhanced susceptibility of these mice to develop autoimmunity and atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus epidermidis causes infections associated with medical devices including central venous catheters, orthopaedic prosthetic joints and artificial heart valves. This coagulase-negative Staphylococcus produces a conventional cellular lipoteichoic acid (LTA) and also releases a short-glycerophosphate-chain-length form of LTA (previously termed lipid S) into the medium during growth. The relative pro-inflammatory activities of cellular and short-chain-length exocellular LTA were investigated in comparison with peptidoglycan and wall teichoic acid from S. epidermidis and LPS from Escherichia coli O111. The ability of these components to stimulate the production of proinflammatory cytokines [interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α] and nitric oxide was investigated in a murine macrophage-like cell line (J774.2), and in peritoneal and splenic macrophages. On a weight-for-weight basis the short-chain-length exocellular LTA was the most active of the S. epidermidis products, stimulating significant amounts of each of the inflammatory cytokines and nitric oxide, although it was approximately 100-fold less active than LPS from E. coli. By comparison the full-chain-length cellular LTA and peptidoglycan were less active and the wall teichoic acid had no activity. As an exocellular product potentially released from S. epidermidis biofilms, the short-chain-length exocellular LTA may act as the prime mediator of the host inflammatory response to device-related infection by this organism and act as the Gram-positive equivalent of LPS in Gram-negative sepsis. The understanding of the role of short-chain-length exocellular LTA in Gram-positive sepsis may lead to improved treatment strategies. © 2005 SGM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purified B-cells fail to proliferate in response to the strong thymus-independent (TI) antigen Lipopolysaccharide (LPS) in the absence of macrophages (Corbel and Melchers, 1983). The fact that macrophages, or factors derived from them are required is supported by the inability of marginal zone B-cells in infants to respond to highly virulent strains of bacteria such as Neisseria meningitidis and Streptococcus pneumoniae (Timens, 1989). This may be due to the lack of CD21 expression on B-cells in infants which could associate with its co-receptor (C3d) on adjacent macrophages. It is not clear whether cell surface contacts and/or soluble products are involved in lymphocyte-macrophage interactions in response to certain antigens. This thesis describes the importance of the macrophage in lymphocyte responses to T-dependent (TD) and TI antigens. The major findings of this thesis were as follows: (1). Macrophages were essential for a full proliferative response to a range of T - and B-cell mitogens and TI-1 and TI-2 antigens, including Concanavalin A, LPS, Pokeweed mitogen (PWM), Dextran sulphate, Phytohaemagglutinin-P (PHA-P) and Poly[I][C]. (2). A ratio of 1 macrophage to 1000 lymphocytes was sufficient for the mitogens to exert their effects. (3). The optimal conditions were established for the activation of an oxidative burst in cells of the monocyte/macrophage lineage as measured by luminometry. The order of ability was OpZ >PMA/lonomycin >f-MLP >Con A >DS >PHA >Poly[I][C] >LPS >PWM. Responses were only substantial and protracted with OpZ and PMA. Peritoneal macrophages were the most responsive cells, whereas splenic and alveolar macrophages were significantly less active and no response could be elicited with Kupffer cells, thus demonstrating heterogeneity between macrophages. (4). Activated macrophages that were then fixed with paraformaldehyde were unable to restore mitogenic responsiveness, even with a ratio of 1 macrophage to 5 lymphocytes. (5). Although highly purified T- and B-cells could respond to mitogen provided live macrophages were present, maximum activation was only observed when all 3 cell types were present. (6). Supernatants from purified macrophage cultures treated with a range of activators were able to partially restore lymphocyte responses to mitogen in macrophage-depleted splenocyte cultures, and purified T - and B-cell cultures. In fact supernatants from macrophages treated with LPS for only 30 minutes could restore responsiveness. Supernatants from OpZ treated macrophages were without effect. (7). Macrophage supernatants could not induce proliferation in the absence of mitogen. They therefore provide a co-mitogenic signal required by lymphocytes in order to respond to mitogen. (8). Macrophage product profiles revealed that LPS and Con A-treated macrophage supernatants showed elevated levels of IL-1β, TNF -α L TB4 and TXB2. These products were therefore good candidates as the co-mitogenic factor. The possible inhibitory factors secreted by OpZ-treated macrophages were PGE2, IL-10 and NO. (9). The removal of cytokines, eicosanoids and TNF-α from LPS-treated macrophage supernatants using Cycloheximide, Dexamethasone and an MMPI respectively, resulted in the inability of these supernatants to restore macrophage-depleted lymphocyte responses to mitogen. (10). rIL-1β and rTNF-α are co-mitogenic factors, as macrophage-depleted lymphocytes incubated with rIL-1β and rTNF-α can respond to mitogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background:Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease.Methods:Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass.Results:The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) -2 progressively increased.Conclusions:Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. © 2013 Hirai et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown that Toll-like receptor (TLR)- signalling contributes significantly to the inflammatory events of atherosclerosis. As products of cholesterol oxidation (oxysterols) accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery, we investigated the potential of 7-ketocholesterol (7-KC), 7β-hydroxycholesterol (7β-HC) and 25-hydroxycholesterol (25-HC) to stimulate inflammatory signalling via the lipid-recognising TLRs 1, 2, 4 and 6. Each oxysterol stimulated secretion of the inflammatory chemokine interleukin-8 (IL-8), but not I?B degradation or tumour necrosis factor- release from monocytic THP-1 cells. Transfection of TLR-deficient HEK-293 cells with TLRs 1, 2, 4 or 6 did not increase sensitivity to the tested oxysterols. Moreover, blockade of TLR2 or TLR4 with specific inhibitors did not reduce 25-hydroxycholesterol (25-HC) induced IL-8 release from THP-1 cells. We conclude that although the oxysterols examined in this study may contribute to increased expression of certain inflammatory genes, this occurs by mechanisms independent of TLR signalling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resolution of inflammation is dependent on recognition and phagocytic removal of apoptotic cells by macrophages. Receptors for apoptotic cells are sensitive to degradation by human neutrophil elastase (HNE). We show in the present study that HNE cleaves macrophage cell surface CD14 and in so doing, reduces phagocytic recognition of apoptotic lymphocytic cells (Mutu 1). Using an improved method of adenovirus-mediated transfection of macrophages with the HNE inbibitor elafin, we demonstrate that elafin overexpression prevents CD14 cleavage and restores apoptotic cell recognition by macrophages. This approach of genetic modification of macrophages could be used to restore apoptotic cell recognition in inflammatory conditions. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptotic-cell clearance is dependent on several macrophage surface molecules, including CD14. Phosphatidylserine (PS) becomes externalised during apoptosis and participates in the clearance process through its ability to bind to a novel receptor, PS-R. CD14 has the proven ability to bind phospholipids and may function as an alternative receptor for the externallsed PS of apoptotic cells. Here we demonstrate that CD14 does not function preferentially as a PS receptor in apoptotic-cell clearance. Compared with phosphatidylcholine and phosphatidylethanolamine, PS was the least active phospholipid binding to human monocyte-derived macrophages and showed no specificity for soluble or membrane-anchored CD14. Significantly, PS-containing liposomes a e to inhibit CD14-dependent uptake of apoptotic cells by macrophages. PS exposure was, however, found to be insufficient for either CD14-dependent or CD14-independent apoptotic-cell uptake by phagocytes. The additional features that enable apoptotic-cell clearance are derived from mechanisms that can be divorced temporally from those responsible for the morphological features of apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) is a multifunctional protein cross-linking enzyme that has been implicated in apoptotic cell clearance but is also important in many other cell functions including cell adhesion, migration and monocyte to macrophage differentiation. Cell surface-associated TG2 regulates cell adhesion and migration, via its association with receptors such as syndecan-4 and β1 and β3 integrins. Whilst defective apoptotic cell clearance has been described in TG2-deficient mice, the precise role of TG2 in apoptotic cell clearance remains ill-defined. Our work addresses the role of macrophage extracellular TG2 in apoptotic cell corpse clearance. Here we reveal TG2 expression and activity (cytosolic and cell surface) in human macrophages and demonstrate that inhibitors of protein crosslinking activity reduce macrophage clearance of dying cells. We show also that cell-impermeable TG2 inhibitors significantly inhibit the ability of macrophages to migrate and clear apoptotic cells through reduced macrophage recruitment to, and binding of, apoptotic cells. Association studies reveal TG2-syndecan-4 interaction through heparan sulphate side chains, and knockdown of syndecan-4 reduces cell surface TG2 activity and apoptotic cell clearance. Furthermore, inhibition of TG2 activity reduces crosslinking of CD44, reported to augment AC clearance. Thus our data define a role for TG2 activity at the surface of human macrophages in multiple stages of AC clearance and we propose that TG2, in association with heparan sulphates, may exert its effect on AC clearance via a mechanism involving the crosslinking of CD44.